
Neural Texture Enhancement

Mutian Tong, Carl von Bonin

Columbia University in the City of New York

Abstract
We propose a novel approach to procedural texture generation for use in video game scenes
utilizing a modified Pix2PixHD model to artificially enhance first-person-view renders of low-
fidelity scenes and extract the synthetic textures. To increase performance, we take advantage
of the additional information available through the explicit scene representation to pass normal
and depth in addition to low-fidelity color maps to the model, and utilize texture coordinate
data to extract textures effectively.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Prior Work 2

2 Overview 2
2.1 Methodology 2
2.2 Auxiliary frame data 2
2.3 Full pipeline 3

3 Data acquisition 3
3.1 Requirements 3
3.2 Half-Life 2 3
3.3 Exporting color and auxiliary

maps from Blender 3

4 Model description 3
4.1 Model Setup and Training

Specifics 3
4.2 Adopting Attention Mecha-

nisms for Better Spatial Under-
standing 4

4.3 Iterative Texture Recovery
from Output Views 5

5 Results 5
5.1 Evaluating on in- domain data . 5
5.2 Generalization and ablation

discussions 6
5.3 Extracted textures 7

6 Conclusions 7

6.1 Summary 7
6.2 Future work 7

1 Introduction

1.1 Motivation

Technical advancements in both hardware
and software solutions have dramatically ex-
panded the boundaries of graphical fidelity.
As a result, player expectations for visu-
ally stunning, immersive environments have
surged. Modern games are judged not only
by their mechanics and narrative depth but
also by the realism and artistry of their visual
assets.

Meeting these expectations can be challenging
for game developers. Creating high-quality
game assets, particularly textures, is time-
consuming and cost intensive. Artists spend
a significant amount of time creating differ-
ent texture maps for each object all of which
must be aligned with the 3D geometry in a
tedious process known as UV mapping. This
focus on asset production can divert time and
resources from the core goal of game develop-
ment: designing engaging and enjoyable expe-
riences. Excessive effort on graphical fidelity
can detract from the creative energy needed
to enhance the player’s interaction with the
game world.

Columbia University in the City of New York

In recent years, we have seen an increase in
tools and technologies that streamline the cre-
ative process, simplifying the path from idea
to execution. Such tools should help artists
quickly translate their creative vision into re-
sults, reducing repetitive and labor-intensive
tasks. Texture generation is one use case of
such tools.

1.2 Prior Work

Following recent developments in generative
deep learning models, the field of Neural Ren-

dering has seen increased applicability. In
particular, Denoising Diffusion Probabilistic
Models [1] have facilitated the generation of
photorealistic images, which directly relates
to our texture generation problem. As such,
various diffusion based texture and material
generation pipelines have already been devel-
oped. Examples include AI Texture Genera-
tor by Polycam [2], Unity’s Muse [3] and Dream
Textures by Carson Katri [4]. However, these
approaches focus on generating individual tex-
tures from textual prompts, and do not take
scene context into account.

2 Overview

2.1 Methodology

Instead of directly generating individual tex-
tures using a Diffusion model, we designed a
multi-step pipeline that relies on full-frame
renders of scenes with very primitive, low-
fidelity textures applied to them. A model
then generates a re-textured version of each
frame, from which we can then extract the
desired texture(s). This approach ensures the
model is given access to the full context of the
scene and generates textures that are stylisti-
cally coherent with each other.

Scene rendered with low-fidelity textures
(left) and expected enhanced output (right)

2.2 Auxiliary frame data

Since we have full access to the geometry when
rendering the low-fidelity images, we can also
export the normal and depth passes as ad-
ditional data for the model. This is espe-
cially important considering the input color

image likely contains large areas featuring the
same static color without any shading, mak-
ing depth and face orientation ambiguous.

Normal (left) and depth (right) passes

Finally, to facilitate texture extraction, we can
also save the texture coordinate (UV) data for
each pixel, as well as a map assigning a unique
color to each individual texture used in the
frame.

UV map (left) and material segmentation
map (right)

2

Columbia University in the City of New York

2.3 Full pipeline

To generate textures for a scene, we start
by manually assigning low-fidelity textures,
which can be as simple as just plain col-
ors, and render the color, depth, normal, UV

and material segmentation maps from differ-
ent camera angles. A generative model is then
used to predict the color map for each frame
if it had high-fidelity textures. Finally, we ex-
tract the desired texture(s) from each frame
using the UV data, and combine the results.

3 Data acquisition

3.1 Requirements

To train a model for this task, a large image
dataset is needed containing not only video
game frames rendered with high- and low-
fidelity maps, but also the corresponding nor-
mal, depth, UV, and material segmentation
maps.

3.2 Half-Life 2

Due to the lack of a large enough dataset fit-
ting our exact needs, we needed a way to gen-
erate one ourselves. We began searching for a
game that already featured fully textured en-
vironments, and that we could easily modify
for our needs. The 2004 First-person-shooter
Half-Life 2 came to mind, due to its use of
photo-based textures and the availability of
development tools publicly released by its ed-
itor, Valve Software. Additionally, due to the
popularity of the game and its modding scene,
many tools and resources have been developed
around it.

One such resource of particular interest in our

case is the Source Engine Blender collection,
an archive of over 500 different maps from
Valve’s titles, including Half-Life 2, ported to
the Blender 3D modeling and rendering soft-
ware.

3.3 Exporting color and auxil-
iary maps from Blender

Having access to the game’s maps in Blender
meant we could animate a camera path scan-
ning each scene from various angles, and ren-
der an image sequence. We rendered each
image with flat shading to remove any shad-
ows or lighting effects from the output, which
could pollute the data. Exporting normal and
depth maps was trivial, as Blender has built-
in functionality for that. For texture coor-
dinate and material segmentation maps, we
used Blender’s Python API to apply special
materials to each object automatically. These
materials could be configured to directly out-
put the raw texture coordinates or a random
color for each object.

4 Model description

4.1 Model Setup and Training
Specifics

For recovering high- quality view images from
low- quality view together with series input
maps, we could reformulate the problem as
training a model that can recover the most

likely distribution for each of the pixels in the
original input image that matches the tar-
get distribution in our dataset. With this
pixel-aligned, distribution-minimizing prob-
lem in mind, we decided to tackle the prob-
lem with a variation of the conditional GAN
model that can most effectively utilize the

3

https://github.com/hisprofile/blenderstuff/blob/main/Creations/Source%20Engine%20Blender%20Collection.md
https://blender.org

Columbia University in the City of New York

per- pixel correspondence in our problem set-
ting. More specifically, we chose to adapt
a Resnet- based, encoder- decoder structure
GAN model with a multi- scale discriminator
setup to solve this problem, similar to the ap-
proach used in [5] and [6].

A complete structural overview of our final
network pipeline is shown in the figure above.
Unlike the Pix2Pix series of works, which
use explicitly-numbered segmentation maps
alongside instance maps as inputs, we avoid
making any one-to-one correspondence seg-
mentation maps. The exception is the ma-
terial maps, which we render directly using
the Blender engine. This design choice is due
to the significant variation in object types
across different game scenes. Instead, we
use a 3-channel RGB low-quality view image
as input and concatenate it with four other
types of maps—each expanded into 3 chan-
nels—resulting in a 15-channel tensor for each
single view. While the higher-dimensional in-
put provides richer information for the gener-
ation task, our preliminary experiments have
shown that the model can still generate high-
quality results even without some input maps,
such as the normal maps. However, determin-
ing the minimum set of maps required for op-
timal performance remains an open question.

For model training, we utilized a dataset com-
prising 10K image pairs in total, including
normal, UV, depth, and material maps for
each pair of low- and high-quality images.
Since the data was collected from five distinct
game scenes, and images within each scene
are highly correlated, we adopted a train/test
split strategy that used one scene (the train
station dataset) as the holdout group to eval-
uate the model’s generalization ability. For
training on the remaining data, we employed
a learning rate of 0.0002 0.0002, a batch size
of 16, and trained the model on a single A6000
GPU for 9 hours across 60 epochs. To improve

the model’s generalization ability, we incorpo-
rated a discriminator matching loss alongside
a perceptual VGG loss [7].

4.2 Adopting Attention Mecha-
nisms for Better Spatial Un-
derstanding

Since the release of our baseline pipeline,
significant advancements have been made in
deep learning and computer vision. Among
these, the transformer architecture has gained
widespread attention for its ability to model
long-range dependencies in NLP tasks and
capture global spatial relationships in com-
puter vision problems. Vanilla GAN models
have also demonstrated potential for incor-
porating attention mechanisms, with works
such as [8] showing promise in maintain-
ing long-distance dependency relations using
lightweight attention modules.

Inspired by the structure of SAGAN, we en-
hanced our generator’s convolutional layers
with attention modules. Among various at-
tention mechanisms, we selected the Convolu-
tional Block Attention Module (CBAM) [9] for
its simplicity and effectiveness. As depicted in
the full pipeline graph above, we integrated
two CBAM modules into our pipeline: one
after the down-sampling layers and another
after the ResBlocks. This setup enhances
both low-level feature expressiveness and se-
mantic information understanding. Further-
more, consistent with practices in [8] and [10],
we applied spectral normalization to every
convolutional layer within the three discrim-
inators. This addition stabilized the training
process [10] and accelerated convergence com-
pared to the baseline Pix2PixHD model, as
evidenced by our preliminary ablation stud-
ies.

In addition to these modifications, we de-
signed a channel attention mechanism within
the generator’s up-sampling layers. This
mechanism improves feature selection and
minimizes information loss during the up-

4

Columbia University in the City of New York

sampling process, following the approach
outlined in [11]. Moreover, we replaced all
ReLU activation functions in the original
Pix2PixHD model with Mish activation func-
tions to mitigate vanishing gradients and im-
prove convergence [12].

4.3 Iterative Texture Recovery
from Output Views

To extract a specific texture from an output
view, we can use the material segmentation
map corresponding to the view to select all
pixels coming from said texture. By sampling
the texture coordinate map at the location of
each of these pixels, we obtain the coordinates
where each pixel lies on the texture’s albedo
map. Of course, one view often does not con-
tain enough information to extract a full tex-
ture, but we can repeat the process for multi-
ple views to iteratively fill the texture.

Something to consider during this process is
that the farther away a pixel is from the cam-
era, the less accurate that pixel’s color will

be. This is because far away surfaces cover
less pixels, and as such those pixels’ colors
are actually averages from multiple samples
of the underlying texture, depending on the
type of texture filtering used when rendering
the training set. While filling in a texture, we
want to prioritize colors coming from closer
surfaces, and not override them if a view con-
tains the same pixels but viewed from farther
away. We can accomplish this by sampling
the depth map corresponding to each view,
and keeping a depth buffer in memory when
generating each texture. If the depth value as-
sociated with a pixel is higher than the saved
value, we disregard that pixel.

Texture extracted without depth testing
(left) vs with depth testing (right)

5 Results

5.1 Evaluating on in- domain
data

We chose the perform our test with our last
model trained on the 9K dataset with the
train station scene dataset as a holdout group.
The examples we select for present here are
all coming from different scenes and include
both indoor and outdoor ones. In general, our
model has shown a detailed and precise recov-
ery of information when compared with group
truth even at those places where per- material
details are insufficient on the input images.

Input view (left), Ground Truth View
(Middle), Synthesized View (Right)

We also test our model’s performance when
handling multiple continuous views to see if it
can give a relatively temporally coherent syn-
thesis results, which is critical to the quality
of multiple- view texture extraction method

5

Columbia University in the City of New York

we proposed. And the results are also sat-
isfying, as shown below for selected frames
in 50 frames we tested. The comparison be-
tween our synthesized frames selections and
the ground truth are as follows.

Synthesized views (1st row), ground truth
views (2nd row)

1st (left), 25th (middle), 50th (right) frame
with in the coast scene

We also inlcude the comparison among the
models trained for different number of epochs
here, and our improved models showed a quick
convergence ability on such a large dataset
with a relatively well reconstruction for only
10 epochs and more detailed and color- accu-
rate results after 30 epochs.

Model tested on the same input after 10
epochs (left) and 30 epochs (right).

5.2 Generalization and ablation
discussions

Since the model performs rather superior and
accurate image synthesis capabilities for in-
domain data, it naturally leads us to question
its generalization ability for out- of- domain
(OOD) examples. Since in our case it is hard
for us to test the model on other games we
rather choose to test it on our holdout train
station scene as a representative of OOD ex-

amples here. Though the graphic style were
constant throughout the game across different
scenes, a completely unseen scene still chal-
lenges our model with unseen texture details
during training time and the spatial relations
among unseen objects.

Synthesized results on OOD data

Here we show the results from two OOD ex-
amples. The first synthesized image still re-
tains a high level of details and consistency
across the image, including the intricate tex-
ture on the front- ground road, though the
background with trees still look a little blurry.
The second example, though, shows a worse
case where the model had the problem deal-
ing with the opacity of front- ground street
lamps and shows its difficulty handling with
this kind of strict condition. We hypothesize
that this kind of opacity issue can be largely
solved with strong regularization term based
on the material mask and depth information
together and left it for future improvement.
Finally, we set up an effective ablation stud-
ies to test our model’s improvement upon the
vanilla pix2pixHD pipeline. Under our set-
ting, we keep track of the first few predicted
images during the training stage of both our
modified model and the baseline model. Since
both models show the ability to converge after
an enough number of epochs, we chose to col-
lect the results both at an earlier stage of the
training process with the number chosen to
be 4 under our setting, with all other training
parameters hold unchanged. For the results,
the adapted pipeline has shown a much better
spatial and color awareness at such a begin-
ning stage of training, compared to the result
from baseline model where the image is almost
in grey scale and shows a lack of geometry de-
tails. This shows how effective our pipeline is

6

Columbia University in the City of New York

comparing with the purely convolutional net-
works used in pix2pixHD.

1st row: Results with baseline model, from
left to right: input, output, GT

2nd row: Results with our model, from left
to right: input, output, GT

5.3 Extracted textures

What follows are some examples of textures
extracted from different views.

From left to right: A sand, road, and barn
window texture

We observe significantly higher quality on
tiled textures that are repeated across a scene,
since those textures are likely to be shown in
their entirety for multiple frames.

6 Conclusions

6.1 Summary

This approach does produce promising results, and greatly improves coherence between different
textures in the same scene over other methods. However, it does come at a quality cost due to
the texture extraction component which impacts the maximum resolution and is very reliant
on temporal coherence between frames.

6.2 Future work

The current pipeline is specifically trained on images from one game and as such will always
produce outputs that resemble it. An improved version of this model would be trained on a
more diverse data set and could be fine tuned to specific styles. This will require significant data
acquisition efforts, especially considering our current model’s noticeable drop in performance
when used on out-of-domain data. Additionally, the relatively low output resolution has a
direct impact on the quality of the generated textures.

Another important aspect we have not addressed is the creation of detail maps such as normal,
bump, and roughness. These are essential to achieving graphically fidelity and a full solution
should be able to generate them in addition to albedo.

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates,
Inc., 2020.

7

Columbia University in the City of New York

[2] Polycam. AI Texture Generator for Blender, Unreal, Unity.

[3] Polycam. Unity Muse: Unlock your Creative Potential with AI.

[4] Carson Katri. Dream Textures.

[5] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catan-
zaro. High-resolution image synthesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. CVPR, 2017.

[7] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution, 2016.

[8] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention gen-
erative adversarial networks, 2019.

[9] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional
block attention module, 2018.

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral nor-
malization for generative adversarial networks, 2018.

[11] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and
stabilized gan training for high-fidelity few-shot image synthesis, 2021.

[12] Diganta Misra. Mish: A self regularized non-monotonic activation function, 2020.

8

	Introduction
	Motivation
	Prior Work

	Overview
	Methodology
	Auxiliary frame data
	Full pipeline

	Data acquisition
	Requirements
	Half-Life 2
	Exporting color and auxiliary maps from Blender

	Model description
	Model Setup and Training Specifics
	Adopting Attention Mechanisms for Better Spatial Understanding
	Iterative Texture Recovery from Output Views

	Results
	Evaluating on in- domain data
	Generalization and ablation discussions
	Extracted textures

	Conclusions
	Summary
	Future work

